
Introduction

Over the years, an immense research interest has been 
directed towards coordination chemistry of vanadium, owing 
to the promising insulin-mimetic, appetite-suppressing and 
antihypertensive effects exhibited by vanadium complexes 
[1]. The literature contains numerous reports on the chem-
istry of the vanadyl ion, VO2+, however, of late the chemistry 
of easily synthesisable dichloro vanadium (IV) chelate com-
plexes from VO2+, constituted appropriate precursors for 
alkylation, reduction and substitution reactions and have 
been reported to be functionalised with a variety of ligands. 
Several octacoordinated non-oxovanadium (IV) complexes 
with multidentate N, O donor ligands [2] and biphenylphe-
nols have been reported [3]. Of the numerous ligands known 
to form vanadium complexes, hydroxamic acids (naturally 
occurring or synthetic) constitute an important family of 
organic bioligands [4]. The naturally occurring hydroxamic 
acids (siderophores) are involved in the microbial transport 
of iron [5]. Hydroxamic acids, with the NHOH moiety are 
constituents of antibiotics, antifungal agents, food addi-
tives, tumour inhibitors and growth factors [6–8], because of 
their low toxicities they have a wide spectrum of activities 

in biological systems [9–11]. The powerful biological activity 
of structurally heterogeneous hydroxamic acids is related to 
their ability to form stable chelates with a variety of metal 
ions [12,13]. Metal complexes of hydroxamic acids have also 
attracted considerable attention because of their tautomeri-
sation [14] exhibiting hydroxamic or hydroximic acid forms. 
The theoretical and experimental studies have suggested that 
the hydroxamic form is prevalent in free acids [15] or metal 
hydroxamates [16]. Fewer studies have described vanadium 
(IV) and (V) hydroxamate complexes as compared to many 
other transition metal hydroxamates [17–21] whereas vanadyl 
sulphate, ammonium vanadate and vanadyl acetylaceto-
nate have been exploited as precursors [22]. We have been 
interested in exploring the use of dichlorovanadium (IV) 
β-diketonates as precursors for the synthesis of new com-
plexes. There has been much research interest in coordination 
compounds of biologically active ligands, so in continuation 
of our earlier work [23] and as a result of the biological impor-
tance of vanadium and hydroxamate ligands, we report the 
synthesis and structural characterisation of mixed ligand 
non-oxovanadium (IV) complexes containing 1-phenyl-1, 
3-butanedionate and hydroxamate ligands from the reactions 
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Complexes with a composition of VCl

2-n
(bzac)

2
(HL1,2)

n
 (I – IV) (where bzac = 1-phenyl-1,3-butanedionate anion 

(C
6
H

5
COCHCOCH

3
−); HL1=C

6
H

5
OCH

2
C(O)NHO−, HL2 = C

6
H

5
CH=CHC(O)NHO−, n = 1 and 2) have been synthesised from 

the reactions of (VCl
2
(bzac)

2
) with equi- and bi-molar amounts of potassium phenoxyacetohydroxamate and cin-

namohydroxamate (KHL1,2) in THF + MeOH solvent medium. The complexes have been characterised by elemental 
analyses, molar conductivity, magnetic measurements, IR, electronic and mass spectral studies. The physicochemi-
cal and spectral studies suggest a distorted octahedral geometry around vanadium in the complexes. The antibac-
terial activities of the newly synthesised complexes, vanadium precursor and ligands have been screened in vitro 
against six bacterial species. The complexes have shown higher antibacterial effect than the free ligands.
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of VCl
2
(bzac)

2
 with potassium phenoxyacetohydroxamate 

and cinnamohydroxamate (Figures 1 and 2). The newly syn-
thesised complexes have been structurally characterised and 
assayed for their antibacterial activity, as the development of 
effective antibacterial drugs is a matter of great concern and 
the results are described.

Material and methods

Reagent-grade solvents were dried and distilled prior to use. 
All other chemicals were reagent grade. VCl

2
(bzac)

2
 was 

prepared from VO(bzac)
2
 using published methods [24, 25] 

under nitrogen atmosphere and its formation and purity was 
checked by C, H, Cl and V microanalysis and IR spectral data. 
The potassium phenoxyacetohydroxamate and cinnamohy-
droxamate were synthesised using published methods [26]. 
The vanadium content in the complexes was determined as 
V

2
O

5
 while chlorine was determined by Volhard’s method 

[42]. The carbon, hydrogen and nitrogen analysis were 
obtained on Eager 300 NCH System Elemental Analyser 
(Chandigarh). The molar conductances (10−3 M solutions in 
methanol) were obtained at 25 ± 0.1°C on Elico Conductivity 
Bridge Type CM-82T (Shimla). The magnetic susceptibili-
ties were measured at room temperature by Guoy’s method 
using Hg[Co(NCS)

4
] as calibrant [43]. IR spectra of com-

plexes were recorded as KBr pellets on a Nicolet-5700 FTIR 
spectrophotometer (Shimla). The pellets were prepared in 
a dry box to avoid the action of moisture. The electronic 
spectra of complexes were recorded on a Varian Cary-100 
Bio UV-VIS spectrophotometer (Shimla) using methanol as 
solvent. The FAB-mass spectra were recorded on a Jeol SX 
102/DA-6000 mass spectrometer/data system (Lucknow) 
using Argon/Xenon (6 KV, 10 mA). The accelerating voltage 
was 10 KV and m-nitrobenzylalcohol (NBA) was used as the 
matrix. All bacteria used were clinical isolates taken from the 
Post-Graduate Institute of Medical Education and Research, 
Chandigarh, India.

Synthesis
Preparation of VCl2-n(bzac)2(HL1,2)n

In a typical reaction to a solution of potassium phenoxyac-
etohydroxamate (0.46 g, 2 mmol /0.92 g, 4 mmol) /potassium 
cinnamohydroxamate (0.45 g, 2 mmol /0.90 g, 4 mmol) in 

methanol (20 mL), a solution of VCl
2
(bzac)

2
 (1 g, 2 mmol) 

in THF (20 mL) was added in separate experiments. The 
reaction mixture was stirred for 1 h and was then refluxed 
for 4–5 h. The white residue obtained during the course of 
the reaction was filtered and identified as KCl. The filtrate 
was distilled off to remove excess of solvent. The concentrate 
was then dried under vacuum by repeatedly treating with 
petroleum ether whereupon light-green and violet-blue col-
oured solids were obtained. These were recrystallised from 
dichloromethane.

Antibacterial activity test
The precursor VCl

2
(bzac)

2
, potassium phenoxyaceto-

hydroxamate (KHL1), potassium cinnamohydroxamate 
(KHL2) and vanadium (IV) complexes derived from these 
ligands of composition VCl

2-n
(bzac)

2
(HL1,2)

n
 (where bzac = 

1-phenyl-1,3-butanedionate anion (C
6
H

5
COCHCOCH

3
–); 

HL1=C
6
H

5
OCH

2
C(O)NHO–, HL2=C

6
H

5
CH=CHC(O)NHO–,  n=1 

and 2) were screened in vitro for their antibacterial activity 
on selected bacteria Escherichia coli, Staphylococcus aureus, 
Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus 
epidermidis and Shigella flexneri using the minimum inhibi-
tory concentration (MIC) method. All the samples were tested 
in triplicate.

MIC determination by two-fold serial dilution
The MIC assay [27] was performed in a 96-well microtitre 
plate. For MIC assay of each test drug; a stock solution of 
1mg/ mL of each drug was prepared in DMSO and a row of 
twelve wells was used out of which the last two wells were 
taken as control where no drug was added. To each of the 
ten wells, 100 μL of the Muller-Hinton broth was added, 
except the first well which received 200 μL of broth con-
taining 500 μg/mL concentration of the test drug in DMSO. 
From the first well (containing test drug), 100 μL broth was 
withdrawn using a sterile tip, then added to the 100 μL of 
the broth in the second well and the contents mixed four 
times. Next, 100 μL was withdrawn from the second well 
and added to the third well and so on. In this way, a range 
of two-fold serial dilutions were prepared giving concentra-
tions ranging from 500 μg/mL to 0.98 μg/mL. The broth in 
each of the wells was inoculated with 2 μL of the bacterial 
culture and the contents were mixed by ten clockwise and 
ten anti-clockwise rotations on a flat surface. The plate was 
then incubated at 35°C and the observations for growth of 
bacteria were recorded after 24 h.

Results and Discussion

Chemistry
The interaction of VCl

2
(bzac)

2
 with equi- and bimolar amounts 

of potassium phenoxyacetohydroxamate and potassium cin-
namohydroxamate in THF + methanol solvent medium led to 
the formation of complexes VCl

2-n
(bzac)

2
(HL1,2)

n
 in quantita-

tive yields according to Scheme 1.
The complexes were light green and bluish-violet in 

colour, microcrystalline and soluble in common organic 

C

H

N

O

C

H

H

O OK

Figure 1.  Structure of phenoxyacetohydroxamic acid (HL1).

CCC N OK

O

H

HH

Figure 2.  Structure of cinnamohydroxamic acid (HL2).
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solvents such as methanol, chloroform, dichloromethane 
and acetonitrile, etc. The molar conductance values of the 
complexes (10−3M solutions) (Table 1) in methanol in the 
4.24 to 5.12 Scm2 mole−1 range suggested their non-elec-
trolytic nature. The magnetic moment values (measured at 
room temperature) of the complexes were in the 1.71–1.75 
BM range which suggested they were of a paramagnetic 
nature.

IR spectra
A comparison of the IR spectra of VCl

2
-n(bzac)

2
(HL1,2)

n
 with 

those of VCl
2
(bzac)

2
 and potassium phenoxyacetohydroxa-

mate and cinnamohydroxamate has been useful in provid-
ing information regarding the formation of complexes. 
The absorption bands occurring in the 1680–1597  cm-1 
and 1650–1560 cm-1 regions in potassium phenoxyaceto-
hydroxamate and cinnamohydroxamate respectively have 
been attributed to υ(C=O) mode. The newly synthesised 
vanadium (IV) complexes exhibited bands due to υ(C=O) 
mode in 1663–1592 cm-1 and 1660–1552 cm-1 range respec-
tively. No change in absorption band was observed due 
to υ(C–N) mode (occurring at ~1370 cm-1 in free ligands 
upon complexation). The bands occurring at 3297 cm-1 
and 3229  cm-1 assigned to υ(N–H) mode in KHL1 and 
KHL2 respectively were observed to appear at ~3292-1 and 
~3232 cm-1 in the respective complexes. This observation is 
indicative of the fact that –NH group is retained and does 
not participate in bonding. The bands due to υ(N-O) mode 
occurring at 938 cm-1 and 958 cm-1 in free ligands have been 
found to move to higher wave numbers and appeared at the 
~975 cm-1 and ~971 cm-1 bands in respective series of com-
plexes, suggesting that both the phenoxyacetohydroxamate 
and cinnamohydroxamate ions coordinated via the oxygen 
atom of the -NHO group only [19]. The monodentate nature 
of the ligands thus inferred is in consonance with the obser-
vation that hydroxamate ligands which behave as bidentate 
ligands in binary complexes act as monodentate ligands 

in the presence of secondary ligands. This observation is 
contrary to previous reports describing O, O; N, N and N, 
O coordination in various hydroxamic acids [28]. The two 
to three absorption bands occurring in the 560–465 cm-1 
region have been assigned to υ(V–O) mode [29] in com-
plexes which is obvious for the mixed-ligand complexes. 
In the far-IR spectra of the VCl(bzac)

2
(HL1,2) complexes, 

the absorption bands appearing at ~365 cm-1 may be attrib-
uted to the υ(V–Cl) mode [30]. The absorption bands due 
to υas(C‗O) and υs(C‗O) modes in VCl

2
(bzac)

2
 occur in 

1590–1490 cm-1 and 1380–1310 cm-1 regions respectively. 
It may be mentioned here that we were unable to make 
unambiguous assignments for the absorption bands due 
to the oylacetonate ion in newly synthesised complexes 
due to the occurrence of some common absorption bands 
of hydroxamate and benzoylacetonate ions in the same 
region.

Electronic spectra
The electronic absorption spectra of potassium phe-
noxyacetohydroxamate and cinnamohydroxamate had 
sharp bands at 226, 257 nm and 221, 250 nm respectively 
in MeOH. These bands may be attributed to ligand π→ 
π* transitions. The light-green and bluish-violet solu-
tions of the mixed-ligand complexes of composition 
VCl(bzac)

2
(HL1)] and V(bzac)

2
(HL1)

2
 displayed bands in 

700–800 nm, 500–600 nm range and at 348 nm were assigned 
to LMCT benzoylacetonate(π*)/hydroxamate ligand 
(π*) → vanadium (dπ) charge transfer spectra, 2E

g
 ←  2T

2g
 

transition in octahedral geometry and MLCT vanadium 
(dπ ) → benzoylacetonate(π*) /hydroxamate ligand (π*) 
transitions respectively. In analogy to previous reports on 
non-oxovanadium(IV) complexes [2,31–33] the electronic 
spectra of bluish-violet solutions of VCl(bzac)

2
(HL2) and 

V(bzac)
2
(HL2)

2
 exhibited bands at 500–600 nm, 400–500 nm 

and ~315 nm assigned to 2E
g
 ← 2T

2g
 transition in octahe-

dral geometry, benzoylacetonate/cinnamohydroxamate 

VCl2(bzac)2 

nC6H5OCH2C(O)NHOK 

nC6H5CHCHC(O)NHOK 

[VCl2-n(bzac)2(ONHC(O)CH2OC6H5)n] + nKCl

[VCl2-n(bzac)2(ONHC(O)CHCHC6H5)n] + nKCl

Scheme 1.  Schematic view of synthesis of bis(1-phenyl-1,3-butanedionato)non-oxovanadium(IV) hydroxamates (where n = 1,2).

Table 1.  Analytical Data of non-oxovanadium(IV) complexes.

Complex  
(Molecular formula) Color

Yield 
g (%) 

Decomp.  
Temp. oC

Elemental Analysis Molar cond.Λm 
Scm2s-1

Magnetic 
moment, μ B.M.

Mol. Wt. 
Obs. (Calc.)V Cl C H N

[VCl(bzac)
2
 (HL1)]

(VClC
28

H
26

O
7
N)(I)

Light 
green

1.05 (81) 107 8.55  
(8.88)

6.13 
(6.17)

58.36 
(58.48)

4.39 
(4.52)

2.16 
(2.44)

4.24 1.72 574 (574.5)

V(bzac)
2
( HL1)

2
]

(VC
36

H
34

O
10

N
2
)(II)

Bluish 
Violet

1.34 (84) 110 7.05  
(7.23)

— 61.14 
(61.27)

4.62 
(4.82)

3.70 
(3.97)

4.76 1.71 705 (705)

VCl(bzac)
2
(HL2)]

(VClC
27

H
26

O
6
N)(III)

Bluish 
Violet

1.13 (89) 115 8.47  
(8.93)

6.18 
(6.22)

60.72 
(60.99)

4.41 
(4.55)

2.17 
(2.45)

4.85 1.75 570 (570.5)

[V(bzac)
2
(HL2)

2
]

(VC38H34O8N2)(IV)
Bluish 
Violet

1.30 (83) 112 7.03  
(7.31)

— 65.34 
(65.42)

4.53 
(4.88)

3.96 
(4.01)

5.12 1.73 697 (697)
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ligand (π*) → vanadium (dπ) and MLCT vanadium 
(dπ)  →  benzoylacetonate(π*) /hydroxamate ligand (π*) 
transitions respectively.

Mass spectra
The major FAB-MS peaks observed for the precursor 
VCl

2
(bzac)

2
 and its derivatives with hydroxamate ligands are 

given in Table 2. Although the mass spectra of VCl
2
(bzac)

2
 

did not display any molecular ion peak, the fragment ions 
observed at m/e 472, 411, 245, 205 and 534 corresponding 
to [VCl

2
(bzac)

2
 + CO]+, [VCl(bzac)

2
 + 2H]+, [VCl(bzac) – 2H]+, 

[VCl
2
(bzac) – C

6
H

5
]+ and [V(bzac)

3
]+ respectively clearly 

showed the formation of precursor [34,35]. The most intense 
peak at m/e 154 seemed to be that of the matrix.

The FAB-MS spectra of VCl(bzac)
2
(HL1) (I), V(bzac)

2
(HL1)

2
] 

(II), [VCl(bzac)
2
(HL2) (III) and V(bzac)

2
(HL2)

2
 (IV) showed 

base peaks at 379, 154, 375 and 375 corresponding to [V(bzac)
(HL1) + H]+, matrix, [V(bzac)(HL2) + H]+ and [V(HL2)

2
]+ ions 

in respective complexes. The fragment ions occurring at 
m/e 401, 423 and 461 may be attributed to [VO(HL1)

2
 + 2H]+, 

[VO(HL1)
2
 + Na + H]+, [VCl(HL1)

2
 + CH

3
CO]+ in the case of 

complex (I). The fragment ions at 678 and 701 correspond-
ing to [V(bzac)

2
(HL1)

2
 – CO + H]+ and [V(bzac)

2
(HL1)

2
 – 4H]+ 

appeared in complex (II).
The FAB-MS peaks observed at m/e 467, 439 and 374 

corresponded to (VCl(bzac)
2
 + 2NHO – 3H)+, [VCl(bzac)

(HL2) + 2CH
3
]+ and [V(HL2)(bzac)]+ and the fragment 

ions at 730, 683 and 566 to [V(bzac)
2
(HL2)

2
 + NHO + 2H]+, 

[V(bzac)
2
(HL2) 

2
– CH

3
 + H]+, [V(bzac)

2
(HL2) + NHO]+, showed 

the formation of (III) and (IV) complexes respectively.
Based upon physicochemical and FTIR, UV-VIS and mass 

spectral data coupled with magnetic moment measure-
ments, a distorted-octahedral geometry around vanadium 
may tentatively be proposed (Figures 3 to 6).

Anti bacterial activity
The literature contains numerous reports concerned 
with the antimicrobial activity of ligands and their 
complexes against pathogenic bacteria and plant 
pathogenic fungi [36, 37]. Hence, in the present work, 
the precursor VCl

2
(bzac)

2
, ligands and newly synthe-

sised complexes were tested in vitro for their antibac-
terial activity against E. coli, S. aureus, P. mirabilis,  
P. aeruginosa, S. epidermidis and S. flexneri. From the MIC 
values given in Table 3 it is quite apparent that both the lig-
ands have similar antibacterial activity (62.5 – 250 μg/ mL) 
for all bacterial species except that HL2 is more effective 
against P. aeruginosa than that of HL1. The VCl

2
(bzac)

2
 has 

been observed to inhibit the bacterial growth in a concen-
tration range of 125–250 μg/mL.

The newly synthesised complexes have been found to be 
more active (15.6 – 62.5 μg/mL) than free ligands HL1 and HL2. 
The non-chloro vanadium(IV) complexes (II) and (IV) have 
shown pronounced activity at a MIC of 15.6 μg/mL against 
S. epidermidis and S. flexneri respectively which is higher 
than that of the commercial antibiotic streptomycin used as 
a standard for the comparison of results. These complexes 

are also more effective against P. mirabilis compared to com-
plexes (I) and (III). On the other hand, complexes (I) and (III) 
have shown higher antibacterial activity at MIC 31.2 μg/mL 

Table 2.  Mass-spectral data of non-oxovanadium(IV) complexes.

Complex Major fragment ions (m/e %)

VCl
2
(bzac)

2
[V(bzac)

3
 + CH

3
CO]+ (577, 30.55);  

[VO(bzac)
3
 + H]+ (551, 36.11);  

[VO(bzac)
3
 – H]+ (549, 36.11);  

[V(bzac)
3
]+ (534, 30.55);  

[VCl
2
(bzac)

2
 + CO]+ (472, 58.33);  

[VCl(bzac)
2
 + 2H]+ (411, 13.88);  

[VO(bzac)
2
 + H]+ (390, 41.67);  

[V(bzac)
2
]+ (373, 22.22);  

[VO
2
(bzac) + H]+ (245, 77.77);  

[VO(bzac)]+ (228, 50.00);  
[VCl

2
(bzac) – C

6
H

5
]+ (205, 8.33).

[VCl(bzac)
2
(HL1)] 

(I)
[V(bzac)

3
]+ (534, 11.11);  

[VCl(HL1)
2
 + CH

3
CO]+ (461, 22.22);  

[VO(HL1)
2
 + Na + H]+ (423, 8.33);  

[VO(HL1)
2
 + 2H]+ (401, 13.88);  

[VO(bzac)
2
 + H]+ (390, 75.00);  

[V(bzac)(HL1) + H]+ (379, 100);  
[VCl(HL1)

2
 – C

6
H

5
]+ (341, 11.11);  

[VO
2
(bzac) + H]+ (245, 66.66);  

[VO(bzac)]+ (228, 58.33);  
[HL1 + CO – 2H]+ (192, 16.66).

[V(bzac)
2
(HL1)

2
] 

(II)
[V(bzac)

2
(HL1)

2
 – 4H]+ (701, 8.33);  

[V(bzac)
2
(HL1)

2
 – CO + H]+ (678, 8.33);  

[V(bzac)
2
(HL1)

2
– CONHO – H]+ (645, 8.33);  

[VO(HL1)
2
 + CH

3
CO – H + NBA

1
]+ (577, 19.44);  

[VO(bzac)
3
 + H]+ (551, 22.22);  

[VO(bzac)
3
 – H]+ (549, 19.44);  

[VO(HL1)
2
 + CH

3
CO – H]+ (441, 16.66);  

[VO(bzac)
2
 + H]+ (390, 63.88);  

[VO(bzac)
2
]+ (389, 47.22);  

[V(bzac)
2
]+ (373, 38.88);  

[VO
2
(bzac) + H]+ (245, 61.11);  

[VO(bzac)]+ (228, 41.66);  
[HL1 + CO – 3H]+ (191, 27.77).

[VCl(bzac)
2
(HL2)] 

(III)
[VO(bzac)

3
 + H]+ (551, 19.44);  

[VCl(bzac)
2
 + 2NHO – 3H]+ (467, 11.11);  

[VCl(bzac)(HL2) + 2CH
3
]+ (439, 11.11);  

[VCl(bzac)
2
 + 2H]+ (411, 19.44);  

[VO(bzac)(HL
2
)+ H]+ (390, 36.11);  

[V(bzac)(HL
2
)+H]+ (375, 100);  

[V(bzac)(HL2)]+ (374, 27.77);  
[VCl(bzac) + CO – H]+ (273, 8.33);  
[VO

2
(bzac) + H]+ (245, 33.33);  

[VO(bzac)]+ (228, 16.66);  
[VCl(bzac) – CO]+ (219, 5.55);  
[HL2 + CO + H]+ (191, 11.11).

[V(bzac)
2
(HL2)

2
] 

(IV)
[V(bzac)

2
(HL2)

2
 + NHO + 2H]+ (730, 11.11);  

[V(bzac)
2
(HL2)

2
 – CH

3
 + H]+ (683, 13.88);  

[V(bzac)
2
(HL2) + NHO]+ (566, 13.88);  

[V(bzac)
2
(HL2) + 2CH

3
]+ (565, 11.11);  

[V(bzac)
2
(HL2) – C

6
H

5
 – 2H]+ (456, 8.33);  

[V(bzac)
2
(HL2) – C

6
H

5
CO – 2H]+ (428, 19.44);  

[VO(bzac)
2
 + H]+ (390, 68.88);  

[V(bzac)(HL
2
)+H]+ (375, 100);  

[V(bzac)
2
 – CH

3
]+ (358, 27.78);  

[VO(HL2) + NHO + H]+ (261, 8.33);  
[VO

2
(bzac) + H]+ (245, 66.66);  

[VO(bzac)]+ (228, 58.33);  
[HL2 + CO + H]+ (191, 13.88).

NBA
1
 = 136, NBA

2
 = 137, NBA

3
 = 154, NBA

4
 = 289 and NBA

5
 = 307
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against the bacteria S. flexneri and P. aeruginosa respectively 
relative to complexes (II) and (IV). It is worth pointing out 
here that although all the complexes have shown similar anti-
bacterial activity against E. coli and S. aureus, this observed 
trend is not the same for all these bacteria. The explanation to 
this observation may be ascribed to different liposolubility of 
complexes for different bacteria [38,39]. The enhancement in 
activity may be attributed to the coordination of hydroxam-
ate ligands to the metal ion and an efficient diffusion of the 
metal complexes into bacterial cells [40,41]. The antibacterial 
activity of these complexes was compared with commercial 
antibiotic (streptomycin) and promising bioactivity was 
shown by the complexes studied.

Conclusion

The VCl
2
(bzac)

2
 has been exploited as precursor for 

the synthesis of mixed-ligand non-oxovanadium(IV) 
complexes derived from phenoxyacetohydroxamate 
and cinnamohydroxamate ligands. IR spectral studies 
depicted the unidentate nature of hydroxamate ligands 
in regard to coordination through the hydroxylamine oxy-
gen (-NHO) only is displayed. The complexes have shown 
promising  antibacterial activity against all the bacteria 
tested.

Table 3.  Antibacterial activity of ligands and vanadium (IV) complexes by MIC method in μg/mL.

Compound E. coli S. aureus P. mirabilis P. aeruginosa S. epidermidis S. flexneri

C
6
H

5
OCH

2
C(O)NHOK (HL1) 125 250 125 125 125 62.5

C
6
H

5
CH=CHC(O)NHOK(HL2) 125 250 125 62.5 125 62.5

VCl
2
(bzac)

2
250 250 125 250 125 125

[VCl(bzac)
2
(HL1)] (I) 31.2 62.5 62.5 62.5 62.5 31.2

[V(bzac)
2
(HL1)

2
] (II) 31.2 62.5 31.2 62.5 15.6 62.5

[VCl(bzac)
2
(HL2)] (III) 31.2 62.5 62.5 31.2 125 31.2

[V(bzac)
2
(HL2)

2
] (IV) 31.2 62.5 31.2 62.5 125 15.6

Streptomycin 31.2 62.5 62.5 31.2 62.5 31.2

Cl

C
CH

HN

C

C
H2C

CH3CH3

HC

C

C O

OO

O

O

O

O

Figure 3.  Proposed structure of [VCl(bzac)
2
(HL1)]

CH2

H2C

CH3CH3

CHHC

NH

HN

C C

C

CC

C

O

O

O

O

O

O

O

O

O

O

Figure 4.  Proposed structure of [V(bzac)
2
(HL1)

2
]

HC

CH3

CH3

CH3

HC

C
H

HN
C

C

Cl

CC

CO

O

O

O

O

O

Figure 5.  Proposed structure of [VCl(bzac)
2
(HL2)]

HC

HC

CH3CH3

CH
CH

CH

C

C

C

CC

C

C
H

HN

NH

O

O

O

O

O

O

O

O

Figure 6.  Proposed structure of [V(bzac)
2
(HL2)

2
]
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